4.5 Article

Parallel meta-blocking for scaling entity resolution over big heterogeneous data

期刊

INFORMATION SYSTEMS
卷 65, 期 -, 页码 137-157

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.is.2016.12.001

关键词

Meta-blocking; Map/Reduce model; Parallelization

资金

  1. EU H2020 Big Data Europe project [644564]
  2. EU FP7 SemData project [612551]

向作者/读者索取更多资源

Entity resolution constitutes a crucial task for many applications, but has an inherently quadratic complexity. In order to enable entity resolution to scale to large volumes of data, blocking is typically employed: it clusters similar entities into (overlapping) blocks so that it suffices to perform comparisons only within each block. To further increase efficiency, Meta-blocking is being used to clean the overlapping blocks from unnecessary comparisons, increasing precision by orders of magnitude at a small cost in recall. Despite its high time efficiency though, using Meta-blocking in practice to solve entity resolution problem on very large datasets is still challenging: applying it to 7.4 million entities takes (almost) 8 full days on a modern high-end server. In this paper, we introduce scalable algorithms for Meta-blocking, exploiting the MapReduce framework. Specifically, we describe a strategy for parallel execution that explicitly targets the core concept of Meta blocking, the blocking graph. Furthermore, we propose two more advanced strategies, aiming to reduce the overhead of data exchange. The comparison-based strategy creates the blocking graph implicitly, while the entity-based strategy is independent of the blocking graph, employing fewer MapReduce jobs with a more elaborate processing. We also introduce a load balancing algorithm that distributes the computationally intensive workload evenly among the available compute nodes. Our experimental analysis verifies the feasibility and superiority of our advanced strategies, and demonstrates their scalability to very large datasets.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据