4.3 Article

Strain and Electric Field Controllable Schottky Barriers and Contact Types in Graphene-MoTe2 van der Waals Heterostructure

期刊

NANOSCALE RESEARCH LETTERS
卷 15, 期 1, 页码 -

出版社

SPRINGER
DOI: 10.1186/s11671-020-03409-7

关键词

Schottky barrier; Graphene-MoTe(2)heterostructure; External electric field; Strain; First-principles calculations

向作者/读者索取更多资源

Two-dimensional (2D) transition metal dichalcogenides with intrinsically passivated surfaces are promising candidates for ultrathin optoelectronic devices that their performance is strongly affected by the contact with the metallic electrodes. Herein, first-principle calculations are used to construct and investigate the electronic and interfacial properties of 2D MoTe(2)in contact with a graphene electrode by taking full advantage of them. The obtained results reveal that the electronic properties of graphene and MoTe(2)layers are well preserved in heterostructures due to the weak van der Waals interlayer interaction, and the Fermi level moves toward the conduction band minimum of MoTe(2)layer thus forming anntype Schottky contact at the interface. More interestingly, the Schottky barrier height and contact types in the graphene-MoTe(2)heterostructure can be effectively tuned by biaxial strain and external electric field, which can transform the heterostructure from anntype Schottky contact to aptype one or to Ohmic contact. This work provides a deeper insight look for tuning the contact types and effective strategies to design high performance MoTe2-based Schottky electronic nanodevices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据