4.2 Review

3D Bioprinting of Tumor Models for Cancer Research

期刊

ACS APPLIED BIO MATERIALS
卷 3, 期 9, 页码 5552-5573

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsabm.0c00791

关键词

tumor microenvironment; 3D tumor models; bioprinting; cancer-on-a-chip; 3D bioprinted tumor models

资金

  1. National Institutes of Health Award [R21 CA224422]
  2. Department of Science and Technology of the Government of India

向作者/读者索取更多资源

The exact mechanistic understanding of cancer metastasis continues to be unknown, although it is a major cause of death worldwide. Along with the tumor mass, the tumor microenvironment also contributes to pathogenesis and treatment resistance. Tumors are characterized by a high degree of heterogeneity and complexity. However, the fabrication of suitable in vitro models of the microenvironment is difficult as two-dimensional (2D) models do not completely recapitulate the biochemical and biophysical signals of the tumor environment. Thus, three-dimensional (3D) tumor models are emerging as vital tools for the comprehensive understanding of the sophisticated disease. Among different 3D models such as spheroid cultures, biopolymer scaffolds, organ on chip, and ex vivo tissue slices, 3D bioprinting has a competitive advantage due to the ability to precisely control and define the desired structure and position of multiple types of cells in a high-throughput manner. In this Review, we discussed the 3D bioprinted tumor models that integrate their microenvironment with different cell types, substrates, and bioprinting modalities and their application in drug screening and therapy. Finally, we highlighted the comprehensive understanding of the cancer microenvironment by 3D printed tumor models that are more physiologically relevant than the other models and expounded the challenges that need to be addressed for the clinical translation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据