4.7 Article

Preparation of carbon molecular sieve membranes with remarkable CO2/CH4 selectivity for high-pressure natural gas sweetening

期刊

JOURNAL OF MEMBRANE SCIENCE
卷 614, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.memsci.2020.118529

关键词

Carbon hollow fiber membranes; Cellulose; Ionic liquids; Natural gas; CO2 removel

资金

  1. Research Council of Norway (Norges forskningsrad) [267615]

向作者/读者索取更多资源

Carbon hollow fiber membranes (CHFMs) were fabricated based on cellulose hollow fiber precursors spun from a cellulose/ionic liquid system. By a thermal treatment on the precursors using a preheating process before carbonization, the micropores of the prepared CHFMs were tightened and thus resulting in highly selective carbon molecular sieve (CMS) membranes. By increasing the drying temperature from RT to 140 degrees C, the cellulose hollow fiber precursors show a substantial shrinkage, which results in a reduction of average pore size of the derived CHFMs from 6 to 4.9 angstrom. Although the narrowed micropore size causes the decrease of gas diffusion coefficient, stronger resistance to the larger gas molecules, such as CH4, eventually results in an ultra-high CO2/CH4 ideal selectivity of 917 tested at 2 bar for CHFM-140C due to the simultaneously enhanced diffusion and sorption selectivity. The CHFM-140C was further tested with a 10 mol%CO2/90 mol%CH4 mixed gas at 60 degrees C and feed pressure ranging from 10 to 50 bar. The obtained remarkable CO2/CH4 separation factor of 131 at 50 bar and good stability make these carbon membranes great potential candidates for CO2 removal from high-pressure natural gas.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据