4.7 Article

Cobalt-Doped ZnO Nanorods Coated with Nanoscale Metal-Organic Framework Shells for Water-Splitting Photoanodes

期刊

ACS APPLIED NANO MATERIALS
卷 3, 期 8, 页码 7781-7788

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsanm.0c01325

关键词

nanorod; zinc oxide; water splitting; metal-organic framework; photoelectrochemical; doping

资金

  1. European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant [722176]
  2. Spanish Ministry MINEICO [ENE2016-79282-C5-1-R]
  3. Gobierno de Aragon [DGA T03_17R, DGA T03_20R]

向作者/读者索取更多资源

Developing highly efficient and stable photoelectrochemical (PEC) water-splitting electrodes via inexpensive, liquid phase processing is one of the key challenges for the conversion of solar energy into hydrogen for sustainable energy production. ZnO represents one the most suitable semiconductor metal oxide alternatives because of its high electron mobility, abundance, and low cost, although its performance is limited by its lack of absorption in the visible spectrum and reduced charge separation and charge transfer efficiency. Here, we present a solution-processed water- splitting photoanode based on Co-doped ZnO nanorods (NRs) coated with a transparent functionalizing metal-organic framework (MOF). The light absorption of the ZnO NRs is engineered toward the visible region by Co-doping, while the MOF significantly improves the stability and charge separation and transfer properties of the NRs. This synergetic combination of doping and nanoscale surface functionalization boosts the current density and functional lifetime of the photoanodes while achieving an unprecedented incident photon to current efficiency (IPCE) of 75% at 350 nm, which is over 2 times that of pristine ZnO. A theoretical model and band structure for the core-shell nanostructure is provided, highlighting how this nanomaterial combination provides an attractive pathway for the design of robust and highly efficient semiconductor-based photoanodes that can be translated to other semiconducting oxide systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据