4.6 Article

Cu(ii)-alginate-based superporous hydrogel catalyst for click chemistry azide-alkyne cycloaddition type reactions in water

期刊

RSC ADVANCES
卷 10, 期 54, 页码 32821-32832

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0ra06410f

关键词

-

资金

  1. Ministerio Espanol de Economia y Competitividad (MINECO) [CTQ2016-75068P]

向作者/读者索取更多资源

A novel sustainable hydrogel catalyst based on the reaction of sodium alginate naturally extracted from brown algaeLaminaria digitataresidue with copper(ii) was prepared as spherical beads, namely Cu(ii)-alginate hydrogel (Cu(ii)-AHG). The morphology and structural characteristics of these beads were elucidated by different techniques such as SEM, EDX, BET, FTIR and TGA analysis. Cu(ii)-AHG and its dried form, namely Cu(ii)-alginate (Cu(ii)-AD), are relatively uniform with an average pore ranging from 200 nm to more than 20 mu m. These superporous structure beads were employed for the copper catalyzed [3 + 2] cycloaddition reaction of aryl azides and terminal aryl alkynes (CuAAC)viaclick chemistry at low catalyst loading, using water as a solvent at room temperature and pressure. The catalytic active copper(i) species was generated by the reduction of copper(ii) by terminal alkyneviathe oxidative alkyne homocoupling reaction. The prepared catalysts were found to be efficient (85-92%) and regioselective by affording only 1,4-disubstituted-1,2,3-triazoles. They were also recoverable and reused in their dried form for at least four consecutive times without a clear loss of efficiency. A mechanistic study was performed through density functional theory (DFT) calculations in order to explain the regioselectivity outcome of Cu(ii)-alginate in CuAAC reactions. The analysis of the local electrophilicity (omega(k)) at the electrophilic reagent and the local nucleophilicity (N-k) at the nucleophilic confirms the polar character of CuAAC. This catalyst has the main advantage of being sustainably ligand-free and recyclable.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据