4.7 Article

Synergy between AgInS2 quantum dots and ZnO nanopyramids for photocatalytic hydrogen evolution and phenol degradation

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 398, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2020.123250

关键词

Hydrogen production; Phenol degradation; ZnO Nanopyramids; AgInS2 Quantum dots; Composite photocatalyst

资金

  1. Polish National Science Center within the program OPUS 12 (grant entitled: Mechanism of quantum dots excitation in photocatalytic reactions) [2016/23/B/ST8/03336]
  2. Foundation for Polish Science (FNP) [START 001.2019]

向作者/读者索取更多资源

Despite the unique properties of single semiconductor nanomaterials and quantum dots, poor photocatalytic activity has characterized them and the fabrication of nanocomposites has become necessary to enhance their photocatalytic performance. Thus, AgInS2 quantum dots (AIS QDs, 4.0 +/- 1.6 nm), have been successfully prepared and loaded onto ZnO nanopyramids (ZnO NPy). The effect of the nominal amount of AIS QDs decorating ZnO NPy on the morphology, optical properties, structure and surface chemistry of the nanocomposites was systematically studied. Photocatalytic tests revealed that the 1%AIS@ZnO NPy sample reported the highest photoactivity for phenol degradation in aqueous phase (92 % after one hour of irradiation, lambda > 350 nm) that was 4 and 68 times the reported for bare ZnO NPy and AIS QDs, respectively. Accordingly, the maximum photocatalytic hydrogen evolution, under UV-vis light, for the same sample corresponded to 17 and 21 times the estimated for pristine ZnO NPy and AIS QDs, respectively. Hence, the AIS QDs - ZnO system has been applied in the photocatalytic field for the first time in this work and a synergetic effect was confirmed owing to a strong heterojunction formation between both semiconductors that allows an enhanced charge carrier separation, improving the photocatalytic activity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据