4.7 Article

Spatial prediction of landslide susceptibility using hybrid support vector regression (SVR) and the adaptive neuro-fuzzy inference system (ANFIS) with various metaheuristic algorithms

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 741, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2020.139937

关键词

Landslide susceptibility; Support vector regression (SVR); Adaptive neuro-fuzzy inference system (ANFIS); Metaheuristic algorithms

资金

  1. Basic Research Project of the Korea Institute of Geoscience and Mineral Resources (KIGAM) - Ministry of Science and ICT
  2. College of Agriculture, Shiraz University [98GRC1M271143]

向作者/读者索取更多资源

Landslides are natural and sometimes quasi-natural hazards that are destructive to natural resources and cause loss of human life every year. Hence, preparing susceptibility maps for landslide monitoring is essential to minimizing their negative effects. The main aim of the current research was to develop landslide susceptibility maps for Icheon Township, South Korea, using hybrid Machin learning and metaheuristic algorithms, that is, the bee algorithm (Bee), the adaptive neuro-fuzzy inference system (ANFIS), support vector regression (SVR), and the grey wolf optimizer (GWO), and to compare their predictive accuracy. Based on identified landslide locations, an inventory map was prepared and divided into training and validation data sets (70%/30%). the predicated model outcomes were validated with root mean square error (RMSE), and area under receiver operating characteristic curve (AUC), and pairwise comparison values for the ANFIS, ANFIS-Bee, ANFIS-GWO, SVR, SVR-Bee, and SVR-GWO models were obtained. The area under the curve was obtained with the training and validation data sets. Based on the training data sets, AUC of 80%, 83%, 83%, 69%, 81%, and 80% were obtained for the SVR, SVR-GWO, SVR-Bee, ANFIS, ANFIS-GWO, and ANFIS-Bee models, respectively. For the validation data sets, values of 79%, 82%, 82%, 68%, 79%, and 79%, respectively, were obtained. The SVR-GWO and SVR-Bee models were the most predictive models in terms of constructing the exceptionally focused landslide susceptibility map, with little spatial variation in the highly susceptible classes. Furthermore, the MSE, RMSE, and pairwise comparisons indicated that the SVR-GWO and SVR-Bee models were superior models for this study township. In addition, ANFIS individually was not superior to the ensembles of ANFIS-GWO and ANFIS-Bee for landslide assessment. These landslide susceptibility maps provide a platform for land use planning with an eye toward sustainable development of infrastructure and damage reduction for Icheon Township. (C) 2020 Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据