4.7 Article

P-nitrophenol degradation by pine-wood derived biochar: The role of redox-active moieties and pore structures

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 741, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2020.140431

关键词

Biochar; PNP; Pore structure; Electron exchange capacity; Degradation

资金

  1. National Natural Science Foundation of China [41907278, U1602231, 41725016, 41961134002]
  2. Yunnan Provincial Scientific Innovation Team of Soil Environment and Ecological Safety, Kunming University of Science and Technology [2019HC008]

向作者/读者索取更多资源

Biochar can both adsorb and degrade p-nitrophenol (PNP); however, the PNP degradation mechanism has not been well investigated. We prepared two biochars at pyrolysis temperatures of 500 degrees C (B500) and 700 degrees C (B700). Although B500 showed much stronger free radical signals (which are associated with organic degradation, according to previous studies), the apparent PNP degradation was approximately 3 times higher in the B700 system. The degradation increased significantly after the biochars were washed with water. According to a quantitative analysis of the sorption and degradation and two-compartment first-order kinetics modeling of the apparent removal kinetics, sorption occurred mainly in the initial period, whereas degradation continued throughout the removal process. The PNP degradation rate constant depended mainly on the external surface area at a relatively low concentration (200 mg/L) and was controlled by the microporous surface area at a relatively high concentration (800 mg/L). In addition, the apparent degradation did not depend on the biochar particle size. Therefore, PNP degradation may be related to the three-dimensional structure of the biochar in addition to the exposed external surface. The well-developed pore structure, more accessible surface, and larger electron exchange capacity of B700 may promote electron transfer between the biochar and PNP, and thus accelerate PNP degradation. This study demonstrates that various properties of the biochar may contribute to PNP degradation. (C) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据