4.7 Article

Emerging metal ion-coordinated black phosphorus nanosheets and black phosphorus quantum dots with excellent stabilities

期刊

DALTON TRANSACTIONS
卷 49, 期 34, 页码 11911-11920

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0dt02272a

关键词

-

资金

  1. Natural Science Foundation of Shandong, China [ZR2019MB026]
  2. Source Innovation Plan Application Basic Research Project of Qingdao, China [18-2-2-26-jch]

向作者/读者索取更多资源

In this work, emerging metal ion-coordinated black phosphorus nanosheets (M@BPNSs) and quantum dots (M@BPQDs) were prepared via the sonication-assisted liquid-phase exfoliation of bulk black phosphorus (BP) crystals in the presence of a metal ion (M) and solvothermal reaction of the exfoliated few-layer M@BP nanosheets. Based on theoretical calculations, a bonding mode exists between M and BP. Consequently, the adsorption energies of M on BP via the bonding mode are lower than that of M on BP via the non- bonding mode. Under the bonding mode, the adsorption energy of Zn2+ (-2.04 eV) on BP is lower than other M. Zn2+, serves as the preferred M and can be easily adsorbed on the surface of BP. We experimentally prepared emerging M@BPNSs and M@BPQDs, characterized, and compared various morphologies, microstructures and spectra under different conditions. It is verified, that the surface coordination of M with BP protects BP from oxidization and degradation of its nanostructures upon exposure to O-2 and H2O. In comparison to the bare BPNSs, Zn@BPNSs showed high microstructural stability. Moreover, in comparison to bare BPQDs, Zn@BPQDs exhibited high colloidal stability and excellent stabilities with fluorescence and photothermal conversion performances. The long-term stabilities are due to the M-coordination with BP through P-M bonding on BP nanostructures. Thus, the excellent long-term stabilities in microstructure, fluorescence and photothermal conversion levels endow the emerging two-dimensional M@BPNSs and zero-dimensional M@BPQDs with great prospects towards promising applications, especially in electronics, optoelectronics, optical and biomedical fields.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据