4.7 Article

Future projections of flood dynamics in the Vietnamese Mekong Delta

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 742, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2020.140596

关键词

Hydrodynamic modelling; Hydropower; Climate change; Sea-level rise; Land subsidence

资金

  1. German Academic Exchange Service (DAAD) - NaWaM Programme [91549379]
  2. Academy of Finland [317320]
  3. European Research Council (ERC) under the European Union [819202]
  4. Academy of Finland (AKA) [317320, 317320] Funding Source: Academy of Finland (AKA)

向作者/读者索取更多资源

The annual flood pulse of the Mekong River is crucial to sustain agriculture production, nutrition, and the livelihood of millions of people living in the Vietnamese part of the Mekong Delta (VMD). However, climate change impacts on precipitation, temperature and sea-level combined with land subsidence, upstream hydropower development, and water infrastructures (i.e. high-dykes construction) are altering the hydrological regime of the VMD. This study investigates future changes in flood hazard and agricultural production caused by these different scales of human-induced stresses. A quasi- two-dimensional (quasi-2D) hydrodynamic model was used to simulate eight scenarios representing the individual and compound impacts of these drivers for a baseline (1971-2000) and future (2036-2065) period. The scenarios map the most likely future pathway of climate change (RCP 4.5) combined with the best available Mekong upstream hydropower development, and land subsidence scenarios as well as the current delta development plan. We found that sea-level rise and land subsidence would cause the highest changes in flood hazard and damage to rice crop, followed by hydropower and climate change impacts. Expansion of high-dyke areas in two northernmost delta provinces (An Giang and Dong Thap) would have the smallest impact. The combination of all modelled drivers is projected to increase delta inundation extent by 20%, accompanied with prolonging submergence of 1-2 months, and 2-3 times increase in annual flood damage to rice crops in the flood-prone areas of the VMD. These findings of likely increasing risk of tidal induced flood hazard and damage call for well-planned adaptation and mitigation measures, both structural and non-structural. (C) 2020 Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据