4.7 Article

Inhibitory mechanisms and fate of the analgesic drug acetaminophen in nitrifying activated sludge

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 399, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2020.123104

关键词

Nitrification; Acetaminophen; Inhibition; Nitrosomonas; Nitrospira

资金

  1. National Research Foundation of Korea (NRF) - Korean government (MSIP
  2. Ministry of Science, ICT & Future Planning) [NRF-2017R1C1B5076367]

向作者/读者索取更多资源

This work investigated the inhibitory effects and fate of acetaminophen (N-acetyl-p-aminophenol, APAP) on activated sludge (AS) under nitrifying and aerobic conditions. APAP disrupted the two-step biological nitrification process in a dose-dependent manner. 100 mg/L APAP inhibited ammonia oxidation (the first step of nitrification) accompanied by a significant reduction ( > 80 %) of Nitrosomonas oligotropha in relative abundance. 50 mg/L of APAP had no significant effects on ammonia oxidation but interrupted nitrite oxidation (the second step of nitrification) with more than 90 % reduction of Candidatus Nitrospira defluvii. APAP was removed in nitrifying activated sludge via largely the biotransformation route. Both nitrifiers and heterotrophic microorganisms contributed to overall APAP removal. An AS bioreactor was acclimated to 100 mg/L APAP as the sole source of carbon, nitrogen, and energy to enrich the microbial community with APAP-metabolizing heterotrophs. During acclimation, dynamic changes in community phenotypes occurred with significant reduction in species richness and diversity. Community acclimation significantly increased APAP biotransformation rates. 16S rRNA gene-based community profiling showed selective enrichment for Pseudomonas and Sphingomonas, both with demonstrated APAP metabolic capacity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据