4.2 Review

Polyphosphazene polymers: The next generation of biomaterials for regenerative engineering and therapeutic drug delivery

期刊

出版社

A V S AMER INST PHYSICS
DOI: 10.1116/6.0000055

关键词

-

资金

  1. National Institutes of Health (NIH) [NIH DP1 AR068147]
  2. Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences

向作者/读者索取更多资源

The demand for new biomaterials in several biomedical applications, such as regenerative engineering and drug delivery, has increased over the past two decades due to emerging technological advances in biomedicine. Degradable polymeric biomaterials continue to play a significant role as scaffolding materials and drug devices. Polyphosphazene platform is a subject of broad interest, as it presents an avenue for attaining versatile polymeric materials with excellent structure and property tunability, and high functional diversity. Macromolecular substitution enables the facile attachment of different organic groups and drug molecules to the polyphosphazene backbone for the development of a broad class of materials. These materials are more biocompatible than traditional biomaterials, mixable with other clinically relevant polymers to obtain new materials and exhibit unique erosion with near-neutral degradation products. Hence, polyphosphazene represents the next generation of biomaterials. In this review, the authors systematically discuss the synthetic design, structure-property relationships, and the promising potentials of polyphosphazenes in regenerative engineering and drug delivery.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据