4.6 Article

A near-infrared light-triggered shape-memory polymer for long-time fluorescence imaging in deep tissues

期刊

JOURNAL OF MATERIALS CHEMISTRY B
卷 8, 期 35, 页码 8061-8070

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0tb01237h

关键词

-

资金

  1. China National Funds for Distinguished Young Scientists [51725303]
  2. National Natural Science Foundation of China [21574105]
  3. Fundamental Research Funds for the Central Universities [2682018CX50]

向作者/读者索取更多资源

Implanting a stent in the body through a minimally invasive operation and tracking its location in real-time is still a challenge. Herein, a near-infrared (NIR) light-triggered shape-memory polymer possessing a long-time fluorescence imaging function has been developed by cross-linking 6-arm poly(ethylene glycol)-poly(epsilon-caprolactone) using a croconate dye YHD798 as the chemical crosslinker and NIR-absorption perssad. Due to the extraordinary photothermal conversion property of YHD798, the temperature of the material raised from 20 degrees C to 120 degrees C under 808 nm near-infrared irradiation at 0.4 W cm(-2), leading to shape recovery in 50 s in a programmed shape-transition process. YHD798 also exerted an aggregation-induced emission effect, endowing the polymer with a clear NIR fluorescence imaging function even when covered by a 2 mm pork slab and could be used for the real-time visualization of the implanted device fabricated from this polymer in deep tissues of the body. When a tubular stent that was fabricated from this polymer, was implanted into the carotid artery of a Sprague-Dawley rat, it could recover to its permanent shape under 808 nm laser irradiation in 60 s owing to the shape-memory function and facilitated NIR-I fluorescence imaging after implantation for a week owing to the croconate dye. This work provides a new strategy for designing and developing smart polymers with NIR-light-triggered shape-memory effect and long-term fluorescence imaging function for biomedical applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据