4.8 Article

Supramolecular biosolvents made up of self-assembled rhamnolipids: synthesis and characterization

期刊

GREEN CHEMISTRY
卷 22, 期 18, 页码 6115-6126

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0gc02078h

关键词

-

资金

  1. Spanish Ministry of Science, Innovation and Universities [CTQ2017-83823R, RYC-2015-18482, FPU15/03704]

向作者/读者索取更多资源

Simple coacervation of surfactants constitutes a powerful bottom-up strategy for the production of tailored supramolecular solvents (SUPRASs), which feature outstanding properties in extraction processes. In this study, we develop for the first time SUPRASs made up from biosurfactants (produced by microorganisms) as a greener alternative to synthetic surfactants. Rhamnolipds (RLs) were selected for this purpose due to their green properties and their high potential for industrial applicability. BioSUPRASs were spontaneously produced at room temperature from aqueous solutions of rhamnolipids (RLs) by salt-induced coacervation (NaCl, Na(2)SO(4)or NH4CH3CO2). RLs quantitatively incorporated into the bioSUPRAS phase, so that the process had high atom economy. The boundaries for the coacervation region were delimited as a function of RL and salt concentration and equations were derived to predict the volume of bioSUPRAS from the composition of the synthesis mixture. The composition of bioSUPRASs could be tailored by modifying the concentration of the coacervation-inducing salt. BioSUPRAS aggregates were characterized by dynamic light scattering and cryo-scanning electron microscopy and consisted of vesicles in a size range from nm to mu m. These aggregates offer a variety of interactions for solute solubilisation (dispersion, ionic, dipole-dipole and hydrogen bonding), different polarity microenvironments (RL head group, RL hydrocarbon chains, vesicle aqueous cavity) and a huge number of binding sites (RL concentration varied from 205 to 444 g L-1). The potential of bioSUPRASs for efficient extraction was illustrated by the recovery of highly polar ionic dyes from water with yields above 94%. The compliance of RL-based bioSUPRASs with the twelve principles of green chemistry is discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据