4.8 Article

Combining automated microfluidic experimentation with machine learning for efficient polymerization design

期刊

NATURE MACHINE INTELLIGENCE
卷 2, 期 4, 页码 200-209

出版社

SPRINGERNATURE
DOI: 10.1038/s42256-020-0166-5

关键词

-

资金

  1. National Science Foundation [CBET-1701393]

向作者/读者索取更多资源

Understanding polymerization reactions has challenges relating to the complexity of the systems, the hazards associated with the reagents, the environmental footprint of the operations and the highly nonlinear topologies of reaction spaces. In this work, we aim to present a new methodology for studying polymerization reactions using machine-learning-assisted automated microchemical reactors. A custom-designed rapidly prototyped microreactor is used in conjunction with automation and in situ infrared thermography for efficient, high-speed experimentation to map the reaction space of a zirconocene polymerization catalyst and obtain fundamental kinetic parameters. Chemical waste is decreased by two orders of magnitude and catalytic discovery is reduced from weeks to hours. Bayesian regularization backpropagation is used in conjunction with kinetic modelling to understand the reaction space and resultant technoeconomic topology. Here, we show that efficient microfluidic technology can be coupled with machine-learning algorithms to obtain high-fidelity datasets on a complex chemical reaction. Finding the best ratio of ingredients for polymerization reactions can be time consuming and wasteful. An automated microreactor process with integrated machine learning analysis initiates reactions, measures the resulting yield and cleans itself without human intervention. It can test concentrations of reagents systematically to find the combination with the highest production, while producing a low amount of waste.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据