4.6 Article

Data-Driven Modeling and Quality Control of Variable Duration Batch Processes with Discrete Inputs

期刊

INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH
卷 56, 期 24, 页码 6962-6980

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.iecr.6b03137

关键词

-

向作者/读者索取更多资源

Batch process reactors are often used for products where quality is of paramount importance. To this end, this work addresses the problem of direct, data-driven, quality control for batch processes. Specifically, previous results using subspace identification for modeling dynamic evolution and making quality predictions are extended with two key novel contributions: first, a method is proposed to account for midbatch ingredient additions in both the modeling and control stages. Second, a novel model predictive control scheme is proposed that includes batch duration as a decision variable. The efficacy of the proposed modeling and control approaches are demonstrated using a simulation study of a poly(methyl methacrylate) (PMMA) reactor. Closed loop simulation results show that the proposed controller is able to reject disturbances in feed stock and drive the number-average molecular weight, weight-average molecular weight, and conversion to their respective set-points. Specifically, mean absolute percentage errors (MAPE) in these variables are reduced from 8.66%, 7.87%, and 6.13% under traditional PI control to 1.61%, 1.90%, and 1.67%, respectively.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据