4.4 Article

Preliminary study on the anti-apoptotic mechanism of Astragaloside IV on radiation-induced brain cells

出版社

SAGE PUBLICATIONS INC
DOI: 10.1177/2058738420954594

关键词

apoptosis; Astragaloside IV; brain; JNK-p38; radiation

资金

  1. State Key Laboratory of Neuroscience of China [SKLN-2015B05]
  2. National Natural Science Foundation of China [31760271]

向作者/读者索取更多资源

With multiple targets and low cytotoxicity, natural medicines can be used as potential neuroprotective agents. The increase in oxidative stress levels and inflammatory responses in the brain caused by radiation affects cognitive function and neuronal structure, and ultimately leads to abnormal changes in neurogenesis, differentiation, and apoptosis. Astragaloside x2163; (AS-x2163;), one of the main active constituents of astragalus, is known for its antioxidant, antihypertensive, antidiabetic, anti-infarction, anti-inflammatory, anti-apoptotic and wound healing, angiogenesis, and other protective effects. In this study, the mechanism of AS-IV against radiation-induced apoptosis of brain cells in vitro and in vivo was explored by radiation modeling, which provided a theoretical basis for the development of anti-radiation Chinese herbal active molecules and brain health products. In order to study the protective mechanism of AS-IV on radiation-induced brain cell apoptosis in mice, the paper constructed a radiation-induced brain cell apoptosis model, using TUNEL staining, flow cytometry, Western blotting to analyze AS-IV resistance mechanism to radiation-induced brain cell apoptosis. The results of TUNEL staining and flow cytometry showed that the apoptosis rate of radiation group was significantly increased. The results of Western blotting indicated that the expression levels of p-JNK, p-p38, p53, Caspase-9 and Caspase-3 protein, and the ratio of Bax to Bcl-2 in radiation group were significantly increased. There was no significant difference in the expression levels of JNK and p38. After AS-IV treatment, the apoptosis was reduced and the expression of apoptosis related proteins was changed. These data suggested that AS-IV can effectively reduce radiation-induced apoptosis of brain cells, and its mechanism may be related to the phosphorylation regulation of JNK-p38.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据