4.7 Article

Isolation of antibiotic-resistant bacteria in biogas digestate and their susceptibility to antibiotics

期刊

ENVIRONMENTAL POLLUTION
卷 266, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.envpol.2020.115265

关键词

Biogas digestate; Antibiotic resistance; Bacterial classification; Bacterial isolation; Antimicrobial susceptibility test

资金

  1. China Scholarship Council (CSC) [201606350190]
  2. SLU

向作者/读者索取更多资源

Antibiotics are widely used to prevent and treat diseases and promote animal growth in the livestock industry, and therefore antibiotic residues can end up in biogas digestate from processes treating animal manure (AM) and food waste (FW). These digestates represent a potential source of spread of antimicrobial resistance (AMR) when used as fertilisers. This study evaluated AMR risks associated with biogas digestates from two processes, using AM and FW as substrate, by isolation and identification of antibiotic-resistant bacteria (ARB) and testing their susceptibility to different antibiotics. ARB from the digestates were isolated by selective plating. The antibiotic susceptibility profile of isolates was determined using ampicillin, ceftazidime, meropenem, vancomycin, ciprofloxacin, rifampicin, chloramphenicol, clindamycin, erythromycin, tetracycline, gentamicin or sulfamethoxazole/trimethoprim, representing different antibiotic classes with differing mechanisms of action. In total, 30 different bacterial species belonging to seven genera were isolated and classified. Bacillus and closely related genera, including Paenibacillus, Lysinibacillus and Brevibacillus, were the dominant ARB in both digestates. Most of the ARB strains isolated were non-pathogenic and some were even known to be beneficial to plant growth. However, some were potentially pathogenic, such as an isolate identified as Bacillus cereus. Many of the isolated species showed multi resistance and the AM digestate and FW digestate both contain bacterial species resistant to all antibiotics tested here, except gentamicin. A higher level of resistance was displayed by the FW isolates, which may indicate higher antibiotic pressure in FW compared with AM digestate. Overall, the results indicate a risk of AMR spread when these digestates are used as fertiliser. However, most of the ARB identified are species commonly found in soil, where AMR in many cases is abundant already, so the contribution of digestate-based fertiliser to the spread of AMR may still be very limited. (C) 2020 Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据