4.7 Article

A comparative study of root cadmium radial transport in seedlings of two wheat (Triticum aestivum L.) genotypes differing in grain cadmium accumulation

期刊

ENVIRONMENTAL POLLUTION
卷 266, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.envpol.2020.115235

关键词

Cadmium; Apoplastic barriers; Symplastic transport; Translocation; Wheat genotype

资金

  1. National Natural Science Foundation of China [41671315, 41807126, 41977107]
  2. Natural Science Foundation of Zhejiang Province [LZ18D010001]
  3. Fundamental Research Funds for the Central Universities [2020FZZX001-06]

向作者/读者索取更多资源

The radial transport of cadmium (Cd) is essential for Cd influx in roots. The role of radial transport pathway on the Cd translocation from root to shoot among wheat genotypes are still poorly understood. This study explored the role of apoplastic and symplastic pathway on root Cd uptake and root-to-shoot translocation in Zhenmai 10 (ZM10, high Cd in grains) and Aikang 58 (AK58, low Cd in grains). Under Cd treatment, the deposition of Casparian strips (CSs) and suberin lamellae (SL) initiated closer to the root apex in ZM10 than that in AK58, which resulted in the lower Cd concentration in apoplastic fluid of ZM10. Simultaneously, Cd-induced expression levels of genes related to Cd uptake in roots were significantly higher in AK58 by contrast with ZM10, contributing to the symplastic Cd accumulation in AK58 root. Moreover, the addition of metabolic inhibitor CCCP noticeably decreased the Cd accumulation in root of both genotypes. Intriguingly, compared to ZM10, greater amounts of Cd were sequestrated in the cell walls and vacuoles in roots of AK58, limiting the translocation of Cd from root to shoot. Furthermore, the elevated TaHMA2 expression in ZM10 indicates that ZM10 had a higher capacity of xylem loading Cd than AK58. All of these results herein suggest that the radial transport is significant for Cd accumulation in roots, but it cannot explain the difference in root-to-shoot translocation of Cd in wheat genotypes with contrast Cd accumulation in grains. (c) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据