4.6 Article

Microkinetic Modeling of CO Oxidation over FePt-Decorated Graphene Oxide

期刊

INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH
卷 56, 期 30, 页码 8465-8473

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.iecr.7b01935

关键词

-

资金

  1. Department of Science and Technology, India

向作者/读者索取更多资源

This study presents the synthesis and activity of PtFe nanoparticle-decorated graphene oxide (GO) for CO oxidation. As compared to conventional methods of synthesizing noble metal-impregnated catalysts, in this study, GO was decorated with FePt nanoparticles using ultrasonication. The obtained GO/FePt was characterized using X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy, and transmission electron microscopy analysis, confirming the formation of GO and the presence of FePt on GO. GO/FePt was then tested for its activity for CO oxidation. Different catalyst loadings were used, and a differential reactor approach was used to obtain the intrinsic rate of reaction at different experimental temperatures. The active site concentration on the catalyst was obtained using CO chemisorption, and this was incorporated into the kinetic model to propose a dual-site microkinetic model. The kinetic parameters developed in the model were validated against the obtained experimental turnover frequency (TOF) values. As clearly shown by the model predictions against the experimental TOF, we can observe that the model developed in this study fits the experimental results to reasonable accuracy within the differential proximity limit.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据