4.6 Article

Reduction of qubits in a quantum algorithm for Monte Carlo simulation by a pseudo-random-number generator

期刊

PHYSICAL REVIEW A
卷 102, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.102.022424

关键词

-

向作者/读者索取更多资源

It is known that quantum computers can speed up Monte Carlo simulation compared to classical counterparts. There are already some proposals of application of the quantum algorithm to practical problems, including quantitative finance. In many problems in finance to which Monte Carlo simulation is applied, many random numbers are required to obtain one sample value of the integrand, since those problems are extremely high-dimensional integrations, for example, risk measurement of credit portfolio. This leads to the situation that the required qubit number is too large in the naive implementation where a quantum register is allocated per random number. In this paper, we point out that we can reduce qubits keeping quantum speed up if we perform calculation similar to the classical one, that is, estimate the average of integrand values sampled by a pseudo-random-number generator (PRNG) implemented on a quantum circuit. We present not only the overview of the idea but also concrete implementation of PRNG and application to credit risk measurement. Actually, reduction of qubits is a trade-off against increase of circuit depth. Therefore, full reduction might be impractical, but such a trade-off between speed and memory space will be important in adjustment of calculation setting considering machine specs, if large-scale Monte Carlo simulation by quantum computer is in operation in the future.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据