4.7 Article

Combining Azolla and urease inhibitor to reduce ammonia volatilization and increase nitrogen use efficiency and grain yield of rice

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 743, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2020.140799

关键词

Ammonia volatilization; Azolla; Urease inhibitor; Apparent nitrogen recovery efficiency; Rice yield

资金

  1. National Key Research and Development Program of China [2016YFD0300908-02]
  2. key laboratory for crop and animal integrated farming, Ministry of Agriculture and Rural Affairs of the People's Republic of China [KF201805]
  3. Jiangsu Postdoctoral Research Foundation funding scheme [2019K268]

向作者/读者索取更多资源

Paddy Azolla is considered as a promising technical approach to reduce ammonia (NH3) volatilization and increase nitrogen use efficiency (NUE). However, it is not effective in highly fertilized paddy fields as the high ammonium N (NH4+-N) concentrations adversely inhibit the growth and N uptake of Azolla. Urease inhibitors could effectively decrease NH4+-N concentrations in surface water and NH3 volatilization. However, a lack of information still exists regarding the combined effects of Azolla and urease inhibitors on NH3 volatilization, NUE, and grain yield (GY) of rice. A two-year field experiment was conducted including five treatments (no urea application (control), urea (N), urea + Azolla (NA), urea + urease inhibitor (NUI), and urea + Azolla + urease inhibitor (NAUI)). Results showed that NA treatment (-25.2%) was not effective in reducing NH3 volatilization compared with NUI treatment (-43.3%). The NAUI treatment substantially reduced NH3 volatilization (-54.6%) more than that by NA and NUI treatments, primarily because of the lower NH4+-N concentrations, pH, and temperature in surface water. Furthermore, NAUI treatments significantly increased the grain yield (GY) and the apparent N recovery efficiency (ANRE) of rice by 9.0-9.7% and 66.0-71.3%, respectively. The significant increase in GY was mainly from the increased panicle number (4.0%), spikelet number per panicle (15.9%), and total biomass (22.9%), which caused by the enhanced total N uptake (35.8%). NAUI treatment also decreased the yield-scaled NH3 volatilization by 61.1-63.6%. Overall, the co-application of Azolla and urease inhibitor in the rice field substantially decreased NH3 volatilization, and increased NUE and rice yield. (C) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据