4.6 Article

Low-temperature H2S gas sensor based on spherical Ag3PO4-doped SnO2

期刊

NEW JOURNAL OF CHEMISTRY
卷 44, 期 37, 页码 15966-15974

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0nj03189e

关键词

-

向作者/读者索取更多资源

An efficient method for detecting H2S gas at low temperatures using micrometer-sized spherical Ag3PO4-doped SnO(2)materials synthesized by hydrothermal and chemical precipitation methods is reported. The crystalline phase, defects, elemental composition, and morphology of the samples were characterized in detail using scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy. The characterization results verified the spherical structures of Ag3PO4-doped SnO(2)materials. The performance analysis revealed that the proposed gas sensor has the advantages of low operating temperature (100 degrees C), high response value (118), and good selectivity. The excellent H2S gas sensing performance is attributed to the increased oxygen vacancy defects and facile electron transfer process in the conduction band. Overall, this study validates the potential of gas-sensitive sensors based on Ag3PO4-doped SnO(2)materials for practical applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据