4.7 Article

Copula-based Joint Drought Index using SPI and EDDI and its application to climate change

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 744, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2020.140701

关键词

Climate change; Copula-based joint drought index; Partial duration series; Drought severity-duration-frequency curve

资金

  1. National Research Foundation of Korea (NRF) - Korea government (MSIT) [NRF2019R1A2C1003114]

向作者/读者索取更多资源

The drought index, which mainly focuses on the moisture supply side of the atmosphere, which has been mainly used in the field of drought monitoring, has limitations that cannot reflect drought caused by changes in various climate variables such as an increase in surface air temperature due to global warming. To overcome these limitations, various evaporation demand-based drought indices have been proposed, focusing on the aspect of atmospheric moisture demand. However, drought indices that consider only precipitation or the demand for atmospheric evaporation are difficult to comprehensively interpret drought caused by various climatic factors. The novelty of this study is to propose a new drought index to simultaneously monitor droughts occurring in terms of atmospheric moisture supply and demand. The proposed Copula-based Joint Drought Index (CJDI) combines the Standardized Precipitation Index and the Evaporative Demand Drought Index using copula. Since CJDI reflects the correlation between the two drought indices, it is shown that CIDI can better monitor Korea's past droughts than other drought indices. It is found that quantification of past drought using CJDI can be used to objectively recognize the level of drought currently in progress by combining with drought severity-duration-frequency curves derived from partial duration series. As a result of analyzing the future drought pattern in Korea, it was revealed that the drought would be alleviated by about 11% in the case of SPI and SPEI, but the drought would intensify by about 89% in the case of EDDI. In the case of CJDI, it is projected that the drought is likely to intensify to about 17%. From the perspective of better reproducing past droughts and projecting a more convincing future drought than other drought indices, CJDI is expected to be fully utilized as a drought index to monitor droughts and establish climate change adaptation policies. (C) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据