4.6 Article

Impact of Electrode and Cell Design on Fast Charging Capabilities of Cylindrical Lithium-Ion Batteries

期刊

出版社

ELECTROCHEMICAL SOC INC
DOI: 10.1149/1945-7111/abb40c

关键词

lithium-ion battery; cylindrical format; battery design; fast charging; multi-dimensional model; pseudo-two dimensional model

资金

  1. European Union's Horizon 2020 research and innovation programme under the grant Electric Vehicle Enhanced Range, Lifetime And Safety Through INGenious battery management [EVERLASTING-713771]

向作者/读者索取更多资源

Cylindrical formats for high energy lithium-ion batteries shifted from 18650 to 21700 types offering higher volumetric energy density and lower manufacturing costs. Bigger formats such as 26650 may be of benefit as well, but longer electrodes and increased heat accumulation due to larger cell diameters are challenging for the batterys design and performance. An experimental review of state-of-the-art cylindrical lithium-ion batteries implies a delayed development of high energy 26650 cells. Optimized and prospective tab designs are discussed for high energy 18650, 21700 and 26650 formats using an experimentally-validated multi-dimensional multiphysics model of a silicon-graphite/nickel-rich lithium-ion battery. The model incorporates several 1D electrochemical models combined with a 2D electrical and a 3D thermal model. Novel in- and through-plane voltage-drop analysis reveals a dominant influence of the tab design on the cells total polarization, where a multi-tab instead of a single-tab design can improve the fast charging efficiency by up to +23% SoC. Fast charging profiles are adapted to tab design and cylindrical format, which prevent overheatings and the local onset of lithium plating across the active electrode area. Multi-tab design is recommended for high energy 26650 cells, but imbalances in SoC and temperature suggest alternative formats at slightly reduced cell diameters.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据