4.6 Article

One-step vapour phase growth of two-dimensional formamidinium-based perovskite and its hot carrier dynamics

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 22, 期 37, 页码 21512-21519

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0cp02652b

关键词

-

资金

  1. JSPS KAKENHI [JP18H03864, JP19K22113]
  2. JST CREST [JPMJCR18I1]
  3. JSPS A3 Foresight Program
  4. MEXT

向作者/读者索取更多资源

Formamidinum lead iodide perovskite is one of the most promising materials for application in solar cells due to its narrow band gap and higher thermal stability. In this work, we demonstrate the facile synthesis of square-shaped formamidinium lead iodide single crystals on indium tin oxide (ITO) substrates using a one-step vapour phase deposition method. Formamidinium lead iodide-based two-dimensional layered perovskite crystals were successfully synthesized by controlling the deposition conditions. These crystals exhibited a blue-shifted photoluminescence (PL) compared to the conventional formaminium lead iodide perovskite crystals. Power law fittings of the excitation power dependent PL spectra revealed that Auger heating becomes dominant at high excitation densities. In addition, we observed an asymmetric broadening of the PL peak tail at the high energy side, indicating light emission from hot carriers even under steady-state illumination conditions. Phonon-bottleneck effect and Auger heating were considered as the main mechanisms for retardation of hot carrier cooling. Further analysis of the high energy tails using Maxwell-Boltzmann fitting revealed hot-carrier temperatures as high as 690 K. Our findings provide an important aspect of the synthetic approach of perovskites for their potential application in hot carrier solar cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据