4.6 Article

Bi-functional sulphonate-coupled reduced graphene oxide as an efficient dopant for a conducting polymer with enhanced electrochemical performance

期刊

JOURNAL OF MATERIALS CHEMISTRY C
卷 8, 期 37, 页码 12829-12839

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0tc02402c

关键词

-

资金

  1. Swedish Research Council [VR-2015-04434]
  2. China Scholarship Council [201606910036]
  3. Swedish Research Council [2015-04434] Funding Source: Swedish Research Council

向作者/读者索取更多资源

The rapidly emerging field of organic bioelectronics has witnessed the wide use of conducting polymers (CPs) to fabricate advanced chemically modified electrodes (CMEs) for biosensors and biomedical devices. The electrochemical performance of the CPs in such devices is closely related to the quality and physiochemical nature of the dopants. A bi-functional graphene oxide derivative with high reduction degree and negatively-charged sulphonate functionality,i.e.sulphonate-coupled reduced graphene oxide (S-RGO), was developed and used as an efficient dopant for a CP with enhanced electrochemical performance. The S-RGO was synthesisedviaa facile one-pot hydrothermal reaction using 4-hydrazinobenzosulphonic acid (4-HBS) as reductant and sulphonate precursor simultaneously. The resulting S-RGO possesses high aqueous dispersion stability (more than 6 months), high electrical conductivity (1493.0 S m(-1)) and sulphonate functionality. Due to these specific properties, S-RGO demonstrated improved electropolymerisation efficiency for poly(3,4-ethylenedioxythiophene) (PEDOT) proving an effective dopant for the preparation of a PEDOT:S-RGO film (5 mC) with faster polymerisation time (37 s) compared to the conventional 2D dopants GO (PEDOT:GO, 129 s) and RGO (PEDOT:RGO, 66 s). The resulting PEDOT:S-RGO appeared as a homogenous film with uniformly distributed S-RGO dopant, low equivalent series resistance and low charge transfer resistance. Moreover, the electrochemical transduction performance of the PEDOT:S-RGO interface was evaluated with 4 different analytes, including ferric/ferrocyanide redox probe, dopamine, nicotinamide adenine dinucleotide and hydrogen peroxide. As a result of the synergistic effect of S-RGO and PEDOT, the PEDOT:S-RGO demonstrated enhanced electrochemical performance with respect to faster electrode kinetics (smaller Delta E-p), similar to 2 and similar to 4 times increased current responses, and lower peak potentials compared to PEDOT:GO and PEDOT:RGO. This bi-functional S-RGO dopant combined the advantages of conventional GO and RGO to deliver sulphonate functionality and high conductivity for the preparation of advanced PEDOT interface with improved electrochemical performance, that could potentially be applied for applications in electrochemical sensors, biosensors and bioelectronic devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据