4.8 Article

CRISPR/Cas12a-based dual amplified biosensing system for sensitive and rapid detection of polynucleotide kinase/phosphatase

期刊

BIOSENSORS & BIOELECTRONICS
卷 168, 期 -, 页码 -

出版社

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2020.112556

关键词

CRISPR/Cas12a; Polynucleotide kinase/phosphatase (PNKP); Strand displacement amplification; Nicking enzyme; Biosensing

资金

  1. National Natural Science Foundation of China [21874075]
  2. Fundamental Research Funds for Central University, Nankai University [63201043]

向作者/读者索取更多资源

We reported a CRISPR/Cas-based dual amplified sensing strategy for rapid, sensitive and selective detection of polynucleotide kinase/phosphatase (PNKP), a DNA damage repair-related biological enzyme. In this strategy, a PNKP-triggered nicking enzyme-mediated strand displacement amplification reaction was introduced to enrich the activator DNA strands for CRISPR/Cas. Such an isothermal DNA amplification step, together with subsequent activated CRISPR/Cas-catalyzed cleavage of fluorescent-labeled short-stranded DNA probes, enable synergetic signal amplification for sensitive PNKP detection. The proposed strategy showed a wide linear detection range (more than 3 orders of magnitude ranging from 1 x 10(-5) to 2.5 x 10(-2) U/mL T4 PNKP) and a detection limit as low as 3.3 x 10(-6) U/mL. It was successfully used for the PNKP activity detection in cell extracts with high fidelity and displayed great potential for enzyme inhibitor screening and inhibitory capability evaluation. This work broadens the applications of CRISPR/Cas12a-based sensors to biological enzymes and provides a way to improve the sensitivity by introducing an isothermal signal amplification step. Such an isothermal DNA amplification-CRISPR/Cas-combined biosensor design concept might expand CRISPR/Cas-based sensing systems and promote their applications in various fields such as disease diagnosis and drug screening.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据