4.6 Article

3D printed rGO/CNT microlattice aerogel for a dendrite-free sodium metal anode

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 8, 期 38, 页码 19843-19854

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0ta05817c

关键词

-

资金

  1. National Natural Science Foundation of China [U1804132, 61874074, 51802288]
  2. Academic Improvement Program of Physics of Zhengzhou University [2018WLTJ02]
  3. Zhengzhou University Youth Talent Start-up Grant
  4. Zhongyuan Youth Talent support program of Henan province [ZYQR201912152]

向作者/读者索取更多资源

Uncontrolled dendrite formation induces inferior electrochemical performance in sodium metal and even severe safety issues, resulting in metallic sodium anode being unsuitable for practical applications. Herein, an artificial reduced graphene oxide/carbon nanotube (rGO/CNT) microlattice aerogel was constructed using three-dimensional (3D) printing technology and further adopted as a sodium metal host. With its specially designed architecture, the 3D rGO/CNT microlattice aerogel can effectively reduce the local current density and provide abundant active nucleation sites, resulting in homogeneous sodium deposition to overcome the issue of dendrite formation. As a result, the Na@rGO/CNT microlattice anode enables an areal capacity of 1 mA h cm(-2) at 2 mA cm(-2) with a small nucleation overpotential of 17.8 mV, with a stable cycling performance for 640 cycles at a high current density of 8 mA cm(-2). The experimental and simulation results show that the improved performance can be attributed to the rational design of the hierarchical rGO/CNT microlattice aerogel with tuned surface kinetics. Finally, a full battery using a 3D Na@rGO/CNT microlattice as an anode was assembled and delivered a capacity of 67.6 mA h g(-1) at 100 mA g(-1) after 100 cycles. Our results demonstrate that the 3D printed rGO/CNT microlattice aerogel is a promising candidate as a sodium metal host for future generation of sodium metal batteries.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据