4.7 Article

Enhanced oxygen and hydrogen evolution performance by carbon-coated CoS2-FeS2 nanosheets

期刊

DALTON TRANSACTIONS
卷 49, 期 38, 页码 13352-13358

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0dt02671a

关键词

-

资金

  1. National Natural Science Foundation of China [51603113, 21503117]
  2. Taishan Scholar Program of Shandong Province of China [ts201712045]

向作者/读者索取更多资源

It is vital to tailor the surface structure and composition of nanocatalysts, which greatly affect the catalytic activity through the exposure of specific atom coordination environment. To date, less progress has been made in tuning the interface structures of pyrite for promoting the catalytic activity towards overall water splitting. Herein, we developed a facile one-spot strategy to make carbon-layer-coated CoS2-FeS2 heterojunction nanosheets. The carbon layer and interface structures between Co-S and Fe-S were characterized via high resolution transmission electron microscopy. It exhibited a high OER activity with 1.47 V at 10 mA cm(-2), which was superior to that of the commercial RuO2. Meanwhile, the carbon-layer-coated CoS2-FeS2 heterojunction nanosheets with the overpotential of 210 mV at 10 mA cm(-2) was more active than FeS2 nanosheets with 240 mV in the hydrogen evolution reaction. Notably, it enhanced the catalytic activity towards the overall water splitting with the voltage of 1.66 V at 10 mA cm(-2) using a two-electrode system. The remarkable long-term stability was verified by a slight change in the current density of 6 mA cm(-2) for 26 h. The prominent catalytic activity could be related to the exposure of the carbon layer and interface structures. This work demonstrates that engineering the interface structure is essential for boosting the overall water splitting activity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据