4.4 Article

TSN inhibits cell proliferation, migration, invasion, and EMT through regulating miR-874/HMGB2/β-catenin pathway in gastric cancer

期刊

NEOPLASMA
卷 67, 期 5, 页码 1012-1021

出版社

AEPRESS SRO
DOI: 10.4149/neo_2020_190919N931

关键词

gastric cancer; Tanshinone IIA; proliferation; migration; EMT; miR-874/HMGB2 axis

类别

资金

  1. Jinan Science and Technology Development Plan: Clinical Study of Jianpi Disinfectant in Regulating IL-6/STAT3 Signal Pathway Intervening CAG Precancerous Lesions Based on the Theory of Spleen Deficiency and Dynamism [2017046]

向作者/读者索取更多资源

Gastric cancer (GC) is the second leading cause of cancer-associated deaths worldwide. Tanshinone IIA (TSN) is the pure extract from the root of red-rooted salvia and has been reported to inhibit the progression of GC cells. In this study, we investigated the microRNA (miRNA) mediated gene repression mechanism in TSN-administrated GC condition. The cell viability of GC was determined by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay. Cell migration and invasion were detected by transwell assays. The expression levels of epithelial-mesenchymal transition (EMT)-associated proteins (N-cadherin, vimentin, E-cadherin), High-mobility group box proteins 2 (HMGB2), beta-catenin pathway-related proteins (beta-catenin, c-myc, cyclin D1) were detected by western blot analysis in TSN/GC. The expression patterns of miR-874 and HMGB2 in GC were determined by quantitative real-time polymerase chain reaction (qRT-PCR). The potential miR-874-targeted HMGB2 was searched via bioinformatics methods and identified by dual-luciferase reporter assays, RNA immunoprecipitation (RIP) assays, and RNA pull-down assays. Xenograft tumor model was used to evaluate biological function in vivo. TSN limited the proliferation, migration, invasion, EMT progression in GC, and these results could be inverted by the silencing of miR-874. Moreover, the putative binding sites between miR-874 and HMGB2 were predicted by starBase software online. Meanwhile, enforced expression of HMGB2, negatively correlated with that of miR-874, reversed the positive effects of TSN administration on cells. Mechanically, TSN restrained the GC progression by miR-874/HMGB2/beta-catenin signaling in vitro. Additionally, in vivo experiments confirmed that TSN inhibited the GC progression as well. TSN restrained the GC progression by regulating miR-874/HMGB2/beta-catenin pathways in vitro and in vivo.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据