3.8 Proceedings Paper

Optimisation of the performance of holographic beam-shaping diffractive diffusers through refinement of the recording process

期刊

出版社

SPIE-INT SOC OPTICAL ENGINEERING
DOI: 10.1117/12.2555774

关键词

Holography; Volume gratings; Diffusers; Photopolymer; Diffractive optics; Holographic optical elements

资金

  1. Enterprise Ireland [IP20190855]
  2. EU European Regional Development Fund (ERDF) 2014-2020 Programme

向作者/读者索取更多资源

Optical diffusers have uses in laser applications and machine vision. Typical fabrication at a commercial level requires master production and the stamping/copying of individual elements at scale. This expensive, indirect process inhibits custom diffusers at reasonable cost. Previously the authors published a novel, direct, single beam method of recording customizable and controllable volume holographic diffusers by manipulating laser speckle and recording the pattern in photopolymer. This method allows for beam-shaping to produce diffusion patterns of various sizes and shapes. In this work, the direct method of recording controllable holographic diffusers is refined to improve diffuser performance (i.e., a decrease in zero order strength) for a simple diffuser. This is achieved through optimising the recording conditions (exposure energy, power and layer thickness) for a given photopolymer formulation. Significant improvement in the diffuser efficiency is observed through the optimisation process for a particular speckle size, resulting in a five-fold decrease in the remaining zero order. Kogelnik Coupled Wave Theory (KCWT) is explored as a first step towards developing an appropriate model for the behaviour of holographic elements recorded with interference patterns formed through stochastic processes, such as speckle patterns.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据