4.0 Article

A Physicochemical Model of Gold Transformation in the Wastes of Processed Pyrite-Polymetallic Ores (Salair Ridge, Russia)

期刊

RUSSIAN GEOLOGY AND GEOPHYSICS
卷 61, 期 9, 页码 964-975

出版社

RUSSIAN ACAD SCIENCES, SIBERIAN BRANCH, VS SOBOLEV INST GEOL & MINEROL
DOI: 10.15372/RGG2020120

关键词

technogenic mineral phases; horizon of secondary enrichment; supergene gold; physicochemical model

向作者/读者索取更多资源

Gold-bearing dumps of processed pyrite-polymetallic ores of the Ursk ore field (Novo-Urskoe and Beloklyuchevskoe deposits, Salair Ridge) have been studied. Physicochemical modeling of the gold behavior in wastes allowed us to describe quantitatively the gold precipitation process in different horizons of the dumps. In the upper part of the sulfide-rich section, sulfide minerals undergo intense oxidation accompanied by the dissolution of structural and surface-bound gold. Gold redeposition on the pyrite surface (sorption reduction barrier) as a result of electrochemical processes is accompanied by the formation of heavy-metal sulfates and barite. Under the sorption barrier, there is a loose leaching horizon with high humidity, where gold is present in pore solutions as thiosulfate, hydrosulfide, and hydroxo complexes; its content reaches 68 mg/L. In the middle part of the section, composed of compact siliceous sandstones (hardpan), high-grade (up to 973 parts per thousand) gold forms through the disintegration of thiosulfate complexes, but its content decreases to 10(-6) mg/L (lithologic reduction barrier). No visible gold was found in the lower part of the section (soil bed), but its high contents (up to 0.35-0.42 g/L) might be due to the sorption by organic high-molecular compounds, such as humic acids. The morphology and chemical composition of native gold from the gold-containing dumps of processed pyrite-polymetallic ores have been first studied. It is shown that the gold surface has traces of supergene transformations, e.g., gold nano- and microparticles as sponge overgrowth on the gold or barite particle surface or as newly formed gold phases in Fe, Mn, and Al hydroxide films.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据