4.8 Article

Natural variations of SLG1 confer high-temperature tolerance in indica rice

期刊

NATURE COMMUNICATIONS
卷 11, 期 1, 页码 -

出版社

NATURE RESEARCH
DOI: 10.1038/s41467-020-19320-9

关键词

-

资金

  1. National Key Research and Development Program of China [2016YFD0101801]
  2. Strategic Priority Research Program of the Chinese Academy of Sciences [XDA24030201]
  3. State Key Laboratory of Plant Genomics

向作者/读者索取更多资源

With global warming and climate change, breeding crop plants tolerant to high-temperature stress is of immense significance. tRNA 2-thiolation is a highly conserved form of tRNA modification among living organisms. Here, we report the identification of SLG1 (Slender Guy 1), which encodes the cytosolic tRNA 2-thiolation protein 2 (RCTU2) in rice. SLG1 plays a key role in the response of rice plants to high-temperature stress at both seedling and reproductive stages. Dysfunction of SLG1 results in plants with thermosensitive phenotype, while overexpression of SLG1 enhances the tolerance of plants to high temperature. SLG1 is differentiated between the two Asian cultivated rice subspecies, indica and japonica, and the variations at both promoter and coding regions lead to an increased level of thiolated tRNA and enhanced thermotolerance of indica rice varieties. Our results demonstrate that the allelic differentiation of SLG1 confers indica rice to high-temperature tolerance, and tRNA thiolation pathway might be a potential target in the next generation rice breeding for the warming globe. Understanding the mechanism of high-temperature tolerance will help to breed crops adaptive to warming climate. Here, the authors show SLG1, a cytosolic tRNA 2-thiolation protein 2 encoding gene, is differentiated between the two Asian cultivated rice subspecies and confers high temperature tolerance of indica rice.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据