4.7 Article

Efficient multireference perturbation theory without high-order reduced density matrices

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 153, 期 16, 页码 -

出版社

AIP Publishing
DOI: 10.1063/5.0023353

关键词

-

资金

  1. St John's College, Cambridge
  2. NSF [CHE-1800584]
  3. Sloan research fellowship

向作者/读者索取更多资源

We present a stochastic approach to perform strongly contracted n-electron valence state perturbation theory (SC-NEVPT), which only requires one- and two-body reduced density matrices, without introducing approximations. We use this method to perform SC-NEVPT2 for complete active space self-consistent field wave functions obtained from selected configuration interaction, although the approach is applicable to a larger class of wave functions, including those from orbital-space variational Monte Carlo. The accuracy of this approach is demonstrated for small test systems, and the scaling is investigated with the number of virtual orbitals and the molecule size. We also find the SC-NEVPT2 energy to be relatively insensitive to the quality of the reference wave function. Finally, the method is applied to the Fe(II)-porphyrin system with a (32e, 29o) active space and to the isomerization of [Cu2O2]2+ in a (28e, 32o) active space.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据