4.8 Article

Light-induced primary amines and o-nitrobenzyl alcohols cyclization as a versatile photoclick reaction for modular conjugation

期刊

NATURE COMMUNICATIONS
卷 11, 期 1, 页码 -

出版社

NATURE RESEARCH
DOI: 10.1038/s41467-020-19274-y

关键词

-

资金

  1. National Science Foundation of China (NSFC) [21778062]
  2. National Science & Technology Major Project Key New Drug Creation and Manufacturing Program [2018ZX09711002-008]
  3. Science and Technology Commission of Shanghai Municipality, China [18431907100]
  4. Strategic Priority Research Program of the Chinese Academy of Sciences Personalized Medicines-Molecular Signature-based Drug Discovery and Development [XDA12050410]

向作者/读者索取更多资源

The advent of click chemistry has had a profound impact on many fields and fueled a need for reliable reactions to expand the click chemistry toolkit. However, developing new systems to fulfill the click chemistry criteria remains highly desirable yet challenging. Here, we report the development of light-induced primary amines and o-nitrobenzyl alcohols cyclization (PANAC) as a photoclick reaction via primary amines as direct click handle, to rapid and modular functionalization of diverse small molecules and native biomolecules. With intrinsic advantages of temporal control, good biocompatibility, reliable chemoselectivity, excellent efficiency, readily accessible reactants, operational simplicity and mild conditions, the PANAC photoclick is robust for direct diversification of pharmaceuticals and biorelevant molecules, lysine-specific modifications of unprotected peptides and native proteins in vitro, temporal profiling of endogenous kinases and organelle-targeted labeling in living systems. This strategy provides a versatile platform for organic synthesis, bioconjugation, medicinal chemistry, chemical biology and materials science. Developing new click chemistry reactions for robust molecular assembly remains challenging. Here the authors report a light-induced primary amines and o-nitrobenzyl alcohols photoclick cyclization for rapid and modular functionalization of small molecules and native biomolecules, in vitro and in living systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据