4.7 Article

Enhancing Secure MIMO Transmission via Intelligent Reflecting Surface

期刊

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS
卷 19, 期 11, 页码 7543-7556

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TWC.2020.3012721

关键词

Transmitters; MIMO communication; MISO communication; Wireless communication; Optimization; Convergence; Simulation; Intelligent reflecting surface; MIMO; secrecy rate; artificial noise; CSI

资金

  1. National Natural Science Foundation of China [61671364, 61941118]
  2. Outstanding Young Research Fund of Shaanxi Province [2018JC-003]
  3. Innovation Team Research Fund of Shaanxi Province [2019TD-013]

向作者/读者索取更多资源

In this article, we consider an intelligent reflecting surface (IRS) assisted Guassian multiple-input multiple-output (MIMO) wiretap channel (WTC), and focus on enhancing its secrecy rate. Due to MIMO setting, all the existing solutions for enhancing the secrecy rate over multiple-input single-output WTC completely fall to this work. Furthermore, all the existing studies are simply based on an ideal assumption that full channel state information (CSI) of eavesdropper (Ev) is available. Therefore, we propose numerical solutions to enhance the secrecy rate of this channel under both full and no Ev's CSI cases. For the full CSI case, we propose a barrier method and one-by-one (OBO) optimization combined alternating optimization (AO) algorithm to jointly optimize the transmit covariance R at transmitter (Tx) and phase shift coefficient Q at IRS. For the case of no Ev's CSI, we develop an artificial noise (AN) aided joint transmission scheme to enhance the secrecy rate. In this scheme, a bisection search (BS) and OBO optimization combined AO algorithm is proposed to jointly optimize R and Q. Such scheme is also applied to enhance the secrecy rate under a special scenario in which the direct link between Tx and receiver (Rx)/Ev is blocked due to obstacles. In particular, we propose a BS and minorization-maximization (MM) combined AO algorithm with slightly faster convergence to optimize R and Q for this scenario. Simulation results have validated the monotonic convergence of the proposed algorithms, and it is shown that the proposed algorithms for the IRS-assisted design achieve significantly larger secrecy rate than the other benchmark schemes under full CSI. When Ev's CSI is unknown, the secrecy performance of this channel also can be enhanced by the proposed AN aided scheme, and there is a trade-off between increasing the quality of service at Rx and enhancing the secrecy rate.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据