4.6 Article

Design optimization for reliability improvement in microgrids with wind - tidal - photovoltaic generation

期刊

ELECTRIC POWER SYSTEMS RESEARCH
卷 188, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.epsr.2020.106540

关键词

Auto-regressive moving average models; Distributed generation; Monte Carlo simulation; Optimal power system planning

向作者/读者索取更多资源

Distributed generation is essential for smart distribution systems. This prospect mainly depends on the efficient use of renewable resources. Therefore, it is compelling to provide an optimum design framework that allows a thorough modeling to select the most convenient size, location, and renewable energy combination that maximize system reliability on a distribution network. This paper presents an optimization-based framework to design a distributed generation system by incorporating an optimal reliability assessment with wind, solar, and tidal energies. The network planning exercise considers the stochastic nature of the network's state by including time-series models and hourly-based analysis to accurately determine the reliability indexes. Historical meteorological data has been used to model and deploy a set of renewable energy distributed generators which maximize reliability in a 37-bus primary-distribution network. Due to the probabilistic modeling of the system's components, a Sequential Monte-Carlo simulation is used to manage reliability evaluation at the network level. Although large reductions on energy-not-supplied are expected, it is shown that cost and other performance indexes do not follow the same trend, and project selection requires some compromise between cost and performance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据