4.6 Article

Solid-state and liquid-free elastomeric ionic conductors with autonomous self-healing ability

期刊

MATERIALS HORIZONS
卷 7, 期 11, 页码 2994-3004

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0mh01230k

关键词

-

资金

  1. National Key RAMP
  2. D Program of China [2018YFC1105401]

向作者/读者索取更多资源

Solid-state and liquid-free stretchable ionic conductors are highly desirable for stretchable electronics, because the ion-conductive hydrogels and ionogels suffer from potential solvent evaporation and leakage, respectively. Herein, we report a highly stretchable, resilient and liquid-free ion-conductive elastomer, which is further exploited as a stretchable, pressure-independent touch sensor. The liquid-free ion-conductive elastomer is reasonably designed by simultaneously incorporating highly flexible ethoxy chains and hydrogen-bonding sites into the main chains of the imidazole-based polymeric ionic liquid (PIL). The hydrogen-bond cross-linking significantly enhances the mechanical strength and resilience of the PIL-based elastomer despite maintaining a very low glass transition temperature. As a result, the solid-state and liquid-free ion-conductive elastomer possesses an ionic conductivity as high as ca. 0.131 mS cm(-1) at room temperature, a satisfactory tensile strength of ca. 0.24 MPa and a high elongation-at-break of ca. 540%. Importantly, the ion-conductive elastomer exhibits an autonomous self-healing behavior at room temperature, making the cut sample easily recover its original mechanical performance and ionic conductivity. Electrical impedance-based stretchable touch sensors can be fabricated by simply incorporating the ion-conductive elastomer into the alternating current circuit. The touch sensor can accurately sense human touch regardless of being stretched or not. Because of the self-healing property, the stretchable touch sensor can easily restore its sensing performance even after break. The as-developed touch sensor shows high promise for application in human-machine interfaces of soft and stretchable electronics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据