4.7 Article

Exosomal shuttled miR-424-5p from ischemic preconditioned microglia mediates cerebral endothelial cell injury through negatively regulation of FGF2/STAT3 pathway

期刊

EXPERIMENTAL NEUROLOGY
卷 333, 期 -, 页码 -

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.expneurol.2020.113411

关键词

Ischemic; Endothelial cell; Microglia; Exosomes; miR-424-5p

向作者/读者索取更多资源

Exosomes secreted by microglia have been found to play a role in neurovascular unit injury under the ischemic/ hypoxic state. However, the modulatory effect of exosomes shuffled miRNAs produced by microglia in endothelial cells remains undefined. Here, an oxygen-glucose deprivation (OGD) model was constructed both in microglia and brain microvascular endothelial cells (BMEC). The exosomes secreted by microglia were isolated, and the exosomal miRNA profile was detected. Next, gain- and loss- functions of miR-424-5p, one of the most differentially expressed miRNAs in microglia derived exosomes, were conducted in BMEC. The results demonstrated that exosomes from OGD-activated microglia aggravated OGD induced BMEC viability and integrity damage as well as the loss of vascular formation. While the damaging effects were markedly attenuated by inhibiting miR-424-5p. In addition, miR-424-5p overexpression significantly aggravated OGD induced BMEC damage and permeability. Mechanistically, bioinformatics analysis indicated that miR-424-5p targeted the FGF2 mediated STAT3 signaling pathway, which was verified via dual luciferase activity assay and RIP experiment. Furthermore, in vivo experiments in the middle cerebral artery occlusion (MCAO) model mice were conducted. The results revealed that inhibition of miR-424-5p markedly reduced neurological dysfunctions and endothelial cell injury induced by MCAO. The above results confirmed that exosomes from OGD activated microglia induced significant cell damage and permeability of BMEC, in which the upregulated miR-424-5p in the exosomes functioned by regulating FGF2/STAT3 pathway.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据