4.4 Article

Signal propagation via cortical hierarchies

期刊

NETWORK NEUROSCIENCE
卷 4, 期 4, 页码 1072-1090

出版社

MIT PRESS
DOI: 10.1162/netn_a_00153

关键词

Connectome; Neural communication; Neural networks; Brain connectivity; Navigation

资金

  1. Natural Sciences and Engineering Research Council of Canada (NSERC Discovery Grant) [017-04265]
  2. Canada Research Chairs Program
  3. Fonds de recherche du Quebec - Sante (Chercheur Boursier)

向作者/读者索取更多资源

The wiring of the brain is organized around a putative unimodal-transmodal hierarchy. Here we investigate how this intrinsic hierarchical organization of the brain shapes the transmission of information among regions. The hierarchical positioning of individual regions was quantified by applying diffusion map embedding to resting-state functional MRI networks. Structural networks were reconstructed from diffusion spectrum imaging and topological shortest paths among all brain regions were computed. Sequences of nodes encountered along a path were then labeled by their hierarchical position, tracing out path motifs. We find that the cortical hierarchy guides communication in the network. Specifically, nodes are more likely to forward signals to nodes closer in the hierarchy and cover a range of unimodal and transmodal regions, potentially enriching or diversifying signals en route. We also find evidence of systematic detours, particularly in attention networks, where communication is rerouted. Altogether, the present work highlights how the cortical hierarchy shapes signal exchange and imparts behaviorally relevant communication patterns in brain networks. Author Summary In the present report we asked how signals travel on brain networks and what types of nodes they potentially visit en route. We traced individual path motifs to investigate the propensity of communication paths to explore the putative unimodal-transmodal cortical hierarchy. We find that the architecture of the network promotes signaling via the hierarchy, suggesting a link between the structure and function of the network. Importantly, we also find instances where detours are promoted, particularly as paths traverse attention-related networks. Finally, information about hierarchical position aids navigation in some parts of the network, over and above spatial location. Altogether, the present results touch on several emerging themes in network neuroscience, including the nature of structure-function relationships, network communication and the role of cortical hierarchies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据