4.4 Article

Blood-based graphene oxide nanofluid flow through capillary in the presence of electromagnetic fields: A Sutterby fluid model

期刊

MICROVASCULAR RESEARCH
卷 132, 期 -, 页码 -

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.mvr.2020.104062

关键词

Peristaltic pumping; Electromagnetic fields; Blood-based nanofluid; Graphene oxide; Sutterby fluid model; Nanoparticle volume fraction

向作者/读者索取更多资源

Pumping devices with the electrokinetics phenomena are important in many microscale transport phenomena in physiology. This study presents a theoretical and numerical investigation on the peristaltic pumping of non-Newtonian Sutterby nanofluid through capillary in presence of electromagnetohydrodynamics. Here blood (Sutterby fluid) is taken as a base fluid and nanofluid is prepared by the suspension of graphene oxide nano-particle in blood. Graphene oxide is extremely useful in the medical domain for drug delivery and cancer treatment. The modified Buongiorno model for nanofluids and Poisson-Boltzmann ionic distribution is adopted for the formulation of the present problem. Constitutive flow equations are linearized by the implementation of approximations low Reynolds number, large wavelength, and the Debye-Huckel linearization. The numerical solution of reduced coupled and nonlinear set of equations is computed through Mathematica and graphical illustration is presented. Further, the impacts of buoyancy forces, thermal radiation, and mixed convection are also studied. It is revealed in this investigation that the inclusion of a large number of nanoparticles alters the flow characteristics significantly and boosts the heat transfer mechanism. Moreover, the pumping power of the peristaltic pump can be enhanced by the reduction in the width of the electric double layer which can be done by altering the electrolyte concentration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据