4.6 Article

Zr(IV) functionalized graphene oxide anchored sand as potential and economic adsorbent for fluoride removal from water

期刊

DIAMOND AND RELATED MATERIALS
卷 109, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.diamond.2020.108081

关键词

Adsorption; Defluoridation; Fluoride; Graphene oxide; Zirconium impregnated graphene oxide

资金

  1. Kurita Asia Research Grant by Kurita water and Environment Foundation (KWEF), Japan [19P010]

向作者/读者索取更多资源

Excessive fluoride (F) in drinking water is a major problem affecting human health in many parts of the world. Cost-effective adsorbents are required for the defluoridation of drinking water. A carbon-based adsorbent, graphene oxide coated sand was produced from very inexpensive materials, sugar and river sand and impregnated with zirconium (Zr) for defluoridation of water. F adsorption by Zr impregnated graphene oxide coated sand (ZIGCS) at pH 4.0 satisfactorily fitted to Langmuir and Freundlich adsorption models with a Langmuir maximum adsorption capacity of 6.12 mg/g which is one of the highest values among the other carbon-based economic adsorbents reported for defluoridation. The adsorption of F on to ZIGCS (point of zero charge of pH 4.5) increased from pH 2 to 4 and then decreased up to 12. However, considerable adsorption capacity was observed throughout this pH range. Pseudo-second order model successfully described the adsorption reaction kinetics. Fluoride adsorbed on to ZIGCS was effectively desorbed using 0.1 M NaOH and the regenerated adsorbent maintained approximately 75% of the original F adsorption capacity even after five regeneration cycles. Thermodynamic data revealed that the adsorption process was endothermic and spontaneous with increase in randomness at the solid/solution interface.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据