4.8 Article

Common schizophrenia risk variants are enriched in open chromatin regions of human glutamatergic neurons

期刊

NATURE COMMUNICATIONS
卷 11, 期 1, 页码 -

出版社

NATURE RESEARCH
DOI: 10.1038/s41467-020-19319-2

关键词

-

资金

  1. National Institutes of Health [R01AG050986, R01MH109677, U01MH116442, R01MH110921]
  2. Veterans Affairs (Merit grant) [BX002395]
  3. Lundbeck Foundation, Denmark [R102-A9118, R155-2014-1724]
  4. NARSAD Young Investigator Grant from the Brain & Behavior Research Foundation [27209]

向作者/读者索取更多资源

The chromatin landscape of human brain cells encompasses key information to understanding brain function. Here we use ATAC-seq to profile the chromatin structure in four distinct populations of cells (glutamatergic neurons, GABAergic neurons, oligodendrocytes, and microglia/astrocytes) from three different brain regions (anterior cingulate cortex, dorsolateral prefrontal cortex, and primary visual cortex) in human postmortem brain samples. We find that chromatin accessibility varies greatly by cell type and, more moderately, by brain region, with glutamatergic neurons showing the largest regional variability. Transcription factor footprinting implicates cell-specific transcriptional regulators and infers cell-specific regulation of protein-coding genes, long intergenic noncoding RNAs and microRNAs. In vivo transgenic mouse experiments validate the cell type specificity of several of these human-derived regulatory sequences. We find that open chromatin regions in glutamatergic neurons are enriched for neuropsychiatric risk variants, particularly those associated with schizophrenia. Integration of cell-specific chromatin data with a bulk tissue study of schizophrenia brains increases statistical power and confirms that glutamatergic neurons are most affected. These findings illustrate the utility of studying the cell-type-specific epigenome in complex tissues like the human brain, and the potential of such approaches to better understand the genetic basis of human brain function. Here, the authors perform ATAC-seq on four distinct cell populations from three different regions of the human brain, finding that chromatin accessibility varies greatly by cell type and less by brain region. This study reveals differences in biological function and gene regulation, as well as overlap of genetic variants associated with schizophrenia and other neuropsychiatric traits.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据