4.5 Article

Improving land-use change modeling by integrating ANN with Cellular Automata-Markov Chain model

期刊

HELIYON
卷 6, 期 9, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.heliyon.2020.e05092

关键词

Environmental science; Computer science; Geography; Land use planning; Land use change; Urban growth; Machine learning; Urban planning; Modeling; Artificial intelligence; Cellular Automata; Markov Chain

资金

  1. Jordan University of Science and Technology [20190014, 675-2018]

向作者/读者索取更多资源

Urban growth and land-use change are a few of many puzzling factors affecting our future cities. Creating a precise simulation for future land change is a challenging process that requires temporal and spatial modeling. Many recent studies developed and trained models to predict urban expansion patterns using Artificial Intelligence (AI). This study aims to enhance the simulation capability of Cellular Automata Markov Chain (CA-MC) model in predicting changes in land-use. This study integrates the Artificial Neural Network (ANN) into CA-MC to incorporate several driving forces that highly impact land-use change. The research utilizes different socio-economic, spatial, and environmental variables (slope, distance to road, distance to urban centers, distance to commercial, density, elevation, and land fertility) to generate potential transition maps using ANN Data-driven model. The generated maps are fed to CA-MC as additional inputs. We calibrated the original CA-MC and our models for 2015 cross-comparing simulated maps and actual maps obtained for Irbid city, Jordan in 2015. Validation of our model was assessed and compared to the CA-MC model using Kappa indices including the agreement in terms of quantity and location. The results elucidated that our model with an accuracy of 90.04% substantially outperforms CA-MC (86.29%) model. The improvement we obtained from integrating ANN with CA-MC suggested that the influence imposed by the driving force was necessary to be taken into account for more accurate prediction. In addition to the improved model prediction, the predicted maps of Irbid for the years 2021 and 2027 will guide local authorities in the development of management strategies that balance urban expansion and protect agricultural regions. This will play a vital role in sustaining Jordan's food security.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据