4.7 Review

Using graphdiyne (GDY) as a catalyst support for enhanced performance in organic pollutant degradation and hydrogen production: A review

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 398, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2020.122957

关键词

Graphdiyne; Photocatalyst; Electrocatalyst; Organic pollutant degradation; Hydrogen production

资金

  1. National Natural Science Foundation of China [51521006, 51579095, 51378190, 51508177]
  2. Program for Changjiang Scholars and Innovative Research Team in University [IRT-13R17]
  3. Three Gorges Follow-up Research Project [2017HXXY-05]

向作者/读者索取更多资源

The development of carbon materials brings a new two-dimensional catalyst support, graphdiyne (GDY), which is attracting increasing interest in the field of catalysis. This article presents a systematical review of recent studies about the characteristics, design strategies, and applications of GDY-supported catalysts. The sp- and sp(2)-hybridized carbon, high electrical conductivity, direct band gap, and high intrinsic carrier mobility are key characteristics for GDY to serve as a competitive catalyst support. Hydrothermal method (or solvothermal method), GDY in-situ growth, and electrochemical deposition are commonly used to load catalysts on GDY support. In the applications of GDY-supported photocatalysts, GDY mainly serves as an electron or hole transfer material. For the electrocatalytic hydrogen production, the unique electronic structure and high electrical conductivity of GDY can promote the electron transfer and water splitting kinetics. This review is expected to provide meaningful insight and guidance for the design of GDY-supported catalysts and their applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据