4.6 Article

Interfacial CO2-mediated nanoscale oil transport: from impediment to enhancement

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 22, 期 40, 页码 23057-23063

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0cp03930f

关键词

-

资金

  1. NSF [CBET-1705287]
  2. Unconventional Reservoir Engineering Project consortium at the Colorado School of Mines

向作者/读者索取更多资源

CO2-based enhanced oil recovery is widely practiced. The current understanding of its mechanisms largely focuses on bulk phenomena such as achieving miscibility or reducing oil density and viscosity. Using molecular dynamics simulations, we show that CO2 adsorption on calcite surfaces impedes decane transport at moderate adsorption density but enhances decane transport when CO2 adsorption approaches surface saturation. These effects change the decane permeability through 8 nm-wide pores by up to 30% and become negligible only in pores wider than several tens of nanometers. The strongly nonlinear, non-monotonic dependence of decane permeability on CO2 adsorption is traced to CO2's modulation of interfacial structure of long-chain hydrocarbons, and thus the slippage between interfacial hydrocarbon layers and between interfacial CO2 and hydrocarbon layers. These results highlight a new and critical role of CO2-induced interfacial effects in influencing oil recovery from unconventional reservoirs, whose porosity is dominated by nanopores.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据