4.1 Article

Sedaghatian-type spondylometaphyseal dysplasia: Whole exome sequencing in neonatal dry blood spots enabled identification of a novel variant in GPX4

期刊

出版社

ELSEVIER
DOI: 10.1016/j.ejmg.2020.104020

关键词

Glutathione peroxidase 4 (GPX4); Sedaghatian-type spondylometaphyseal dysplasia; Dry Blood spots (DBS); Whole exome sequencing (WES); Ferroptosis

资金

  1. Teva Pharmaceutical industries Ltd

向作者/读者索取更多资源

Accumulation of lipid peroxides causes membrane damage and cell death. Glutathione peroxidase 4 (GPX4) acts as a hydroperoxidase which prevents accumulation of toxic oxidized lipids and blocks ferroptosis, an iron-dependent, non-apoptotic mode of cell death. GPX4 deficiency causes Sedaghatian-type spondylo-metaphyseal dysplasia (SSMD), a lethal autosomal recessive disorder, featuring skeletal dysplasia, cardiac arrhythmia and brain anomalies with only three pathogenic GPX4 variants reported in two SSMD patients. Our objective was to identify the underlying genetic cause of neonatal death of two siblings presenting with hypotonia, cardiorespiratory failure and SSMD. Whole exome sequencing (WES) was performed in DNA samples from two siblings and their parents. Since critical samples were not available from the patients, DNA was extracted from dry blood spots (DBS) retrieved from the Israeli newborn-screening center. Sanger sequencing and segregation analysis followed the WES. Homozygous novel GPX4 variant, c.153_160del; p.His52fs*1 causing premature truncation of GPX4 was detected in both siblings; their parents were hetemzygotes. Segregation analysis confirmed autosomal recessive inheritance. This report underscores the importance of DBS WES in identifying the genes and mutations causing devastating rare diseases. Obtaining critical samples from a dying patient is crucial for enabling genetic diagnosis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据