4.5 Article

The LPM effect in sequential bremsstrahlung: nearly complete results for QCD

期刊

JOURNAL OF HIGH ENERGY PHYSICS
卷 -, 期 11, 页码 -

出版社

SPRINGER
DOI: 10.1007/JHEP11(2020)053

关键词

Perturbative QCD; Quark-Gluon Plasma

资金

  1. U.S. Department of Energy [DE-SC0007984]
  2. National Natural Science Foundation of China [11935007, 11221504, 11890714]

向作者/读者索取更多资源

The splitting processes of bremsstrahlung and pair production in a medium are coherent over large distances in the very high energy limit, which leads to a suppression known as the Landau-Pomeranchuk-Migdal (LPM) effect. We continue study of the case when the coherence lengths of two consecutive splitting processes overlap (which is important for understanding corrections to standard treatments of the LPM effect in QCD), avoiding soft-emission approximations. Previous work has computed overlap effects for double splitting g -> gg -> ggg. To make use of those results, one also needs calculations of related virtual loop corrections to single splitting g -> gg in order to cancel severe (power-law) infrared (IR) divergences. This paper provides calculations of nearly all such processes involving gluons and discusses how to organize the results to demonstrate the cancellation. In the soft emission limit, our results reproduce the known double-log behavior of earlier authors who worked in leading-log approximation. We also present a first (albeit numerical and not yet analytic) investigation of sub-leading, single IR logarithms. Ultraviolet divergences appearing in our calculations correctly renormalize the coupling alpha (s) in the usual LPM result for leading-order g -> gg.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据